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 This paper presents a practical solution to improving system level Verification and 
Validation (V&V) tests, those tests which exercise end-to-end functionality of a physical system, 
for complex hardware/software systems.  The proposed method to improve system level testing is 
to increase the total number of system configurations that are tested in a way such that the state 
space coverage is explored in a systematic and evenly-distributed fashion.  We describe a method 
for adapting the combinatorial software test strategy known as t-wise testing to complex 
hardware/software systems V&V testing.  Practical requirements and potential test selection 
architecture are provided to demonstrate the utility of the proposed t-wise testing method.  Some 
methods for test selection and prioritization are outlined for instances when complete t-wise 
testing is impractical. 

Introduction 
System level Verification and Validation (V&V) testing serves a variety of purposes depending 
upon the program and system under test.  Typically, system V&V testing provides an opportunity 
to demonstrate that the system satisfies its requirements (Verification) and the customer’s needs 
(Validation) by executing operational scenarios.  System-level scenario test plans are developed in 
order to show that the system meets a particular requirement or are based on the systems 
engineer’s judgment of likely situations in which the system will operate.  In the end, decisions 
regarding the selection of system level V&V tests are based on a quantitative assessment, which 
makes judging the quality of test plans difficult.   

We proceed from the assumption that one important measure of the quality of a system level V&V 
test plan is its ability to test the system in various configurations across numerous scenarios.  The 
state space coverage of a system test plan is described as the subset of all possible initial system 
internal and external configuration settings that are achieved by executing tests within the plan.  To 
ensure the robustness of the system, it would be ideal to be able to test all possible system 
configurations in any number of operational scenarios.  Unfortunately, the resources for many 
system level V&V test programs prohibit achieving this kind of full state space exploration. 

For example, consider the development and testing of a new satellite.  A typical satellite carries 
numerous levels of redundancy to reduce mission risk in the event of a single component failure.  
Assuming that the spacecraft has 10 redundant components, all of which are fully cross-strapped 



  

(i.e. any redundant component can be used in place of the primary unit), it would require 1024 
(2^10) tests to fully verify that the system can operate in any cross-strap configuration.  Given the 
resource demands of a single test, such a large number of tests would be impractical for many 
systems.  As a result, systems engineers typically execute a handful of system-level scenario tests 
that exercise a small number of configurations.  The remaining system configurations are then 
“verified and validated” by drawing analytical conclusions from smaller (cheaper) compatibility 
and interface tests.  Time and budget constraints ensure that not all spacecraft system 
configurations can be tested before launch. 

We first present practical requirements for methods that increase the state space coverage during 
system level V&V tests.  We provide an abstract description of t-wise testing and some notes on 
adaptability requirements.  Then, by using the spacecraft Integration and Test (I&T) environment 
as an example, we show that t-wise testing has real world potential to improve system level V&V 
tests.  We provide information and guidance regarding the various practical choices that must be 
made in order to model a system for a t-wise testing approach.  Additionally, we describe a series 
of metrics that can be used to assess the quality of a V&V test plan in terms of its t-wise 
completeness.  Discussions regarding the practical benefits over current state of the art approaches 
to testing as well as potential weakness are provided.  The paper concludes with an outline of 
potential refinements to t-wise testing using a graph-theoretic modelling approach. 

Practical Requirements for  
Increasing State Space Coverage during V&V testing 

Given the numerous stakeholders involved, limited programmatic resources, and relatively 
high-risk nature of system level V&V testing, several practical requirements must be considered 
when proposing a new method to increase the state space coverage of a test suite.   

Communicability of the test plan is paramount.  System level V&V is a high profile event during 
the system development life-cycle at which time a large number of stakeholders (test conductors, 
management, sponsors, sub-system technical engineers) with numerous, varied agendas will 
influence the test design.  To ensure a proposed test strategy meets the needs of all stakeholders, 
any practical approach to increasing the state-space coverage for V&V tests must be easily 
communicated to those stakeholders.  The decision process to select some test configurations over 
others needs to be clear and transparent.  If some particular complex combinatorial method used to 
select the various configurations under test is difficult to explain to the diverse stakeholders, the 
unfamiliarity of the proposed method will render its adaptation for actual use unlikely.     
Confidence in a new method or procedure requires a clear, intuitive explanation before the testing 
community will accept. 

Additionally, any new method to increase the state space coverage of a test suite must not result in 
significantly increased test time.  System level V&V testing often spans only a small set of the 
complete system state space due to limited programmatic resources (cost and schedule).  Any new 
method for increasing the state-space coverage of a system level V&V test plan requires a careful 
optimization of the testing resources for it to be accepted by the systems engineering community at 
large. Adding additional tests which only demonstrate system robustness within a larger tested 
state space does not have sufficient and direct measurable benefit.  Absent a measure of 
earned-value, additional testing costs are difficulty to justify.  For example, Monte Carlo methods 
used to seed test configurations for computer models are difficult to adapt for physical 



 

  

hardware/software system testing given the large number of tests required to yield useful statistical 
averages.  Therefore, the number of tests (or test resources) that are to be used by a new testing 
methodology should not increase and ideally would decrease over time.  

Finally, system-level V&V testing is usually a highly risky venture that requires testing methods 
that are unambiguous to the test conductor and easily repeatable.  Whether flight testing a new 
airborne weapons system or conducting mission simulations for a deep space satellite loaded with 
propellant, there is an absolute need to know the complete system configuration to safely execute 
end-to-end V&V testing.  Moreover, if an anomaly or failure occurs during a system level V&V 
test, it must be possible to execute the exact same test to demonstrate repeatability of the error and 
to prove out any fixes that may have been implemented. 

Introduction to T-wise Testing 
Given a system model consisting of n independently configurable components, a t-wise test suite 
(equivalently t-wise covering array) is a collection of test vectors such that for every subset of t 
components there are vectors in the set which exercise every possible configuration of those 
components.  In other words, every sub-vector of length t is expressed in some test vector in the 
array.  Execution of a t-wise test suite guarantees that for any choice of t components, every t-way 
configuration of those components is tested.  Compare this with an exhaustive test suite, which 
contains a vector for each of the possible configurations of all n components.  The exhaustive test 
suite requires one test vector for every state vector in the system state space, a number that grows 
exponentially with the number of configurable components, n.  A t-wise test suite, on the other 
hand, requires far fewer test vectors when t is much smaller than n.  In fact, fast algorithms exist [6] 
to produce t-wise covering arrays with a number of tests on the order of k^t log_2(n), where k is 
the number of possible configurations for each component.  The logarithmic factor of n is a great 
savings over the exponential factor for exhaustive test suites in systems with many configurable 
components. 

There is a growing body of empirical evidence that most system failures are the result of complex 
interactions between subsystem components [8].  The number of components involved in these 
types of failures is an active area of research.  Kuhn, et al. studied a collection of complex, 
configurable software systems [4] and found that no more than six components were involved in 
any reported failure, with most failure attributable to four or less components.  Given similarities 
between complex software systems and software/hardware systems, it is reasonable to assume that 
these numbers will prove valid in the hardware/software domain.  We are particularly interested in 
collecting empirical data for a variety of hardware/software systems as this work goes forward. 

Under the assumption that system failures are often attributable to a small number of components 
interacting in an unexpected way, t-wise testing provides a means to uncover many system failures 
during the test phase.  Since a t-wise test suite guarantees that all t-way configurations are fully 
tested, any failure triggered by a configuration of t or less components will be exhibited during 
execution of the test suite.  T-wise testing provides a systematic way of exploring the limited 
interaction sub-state space of the system, providing a balance between cost (as quantified by the 
number of system level tests) and likelihood of finding potential failures during testing. 

 



  

Practical Use of T-wise Testing 
While the use of t-wise testing has been successfully demonstrated in the Verification and 
Validation of software systems [1], it can also be extended to complex systems such as a spacecraft 
undergoing a system level Integration & Test (I&T) program.  To demonstrate the potential benefit 
and real applicability of t-wise testing to a hardware/software software system, we conducted a 
study to examine the state space coverage of some past spacecraft I&T tests in terms of t-wise 
coverage [7].  To adapt the spacecraft data for analysis we established a framework to discretize 
the state vectors of a hardware/software system and developed a series of metrics by which one can 
evaluate how close a test plan comes to achieving t-wise completeness.  In the following section 
we present a potential application of t-wise testing to the spacecraft I&T environment that 
increases the testing state-space coverage without running additional tests. 

Spacecraft I&T refers to one of the final stages in a space vehicle development program where the 
various system components and subsystems are fully integrated with each other prior to launch.  
During spacecraft I&T, system level tests are executed to ensure subsystem compatibility, 
evaluate total system performance, and perform mission simulations that simulate nominal and 
off-nominal scenarios.  The end result of spacecraft I&T is to verify that it will meet its system 
level requirements and validate its performance will meet the sponsors’ needs.  Given the large 
number of staff (i.e. high cost) that are needed during spacecraft I&T, testing time is extremely 
limited.  Any proposal to increase the state space coverage of system level V&V tests by simply 
adding additional tests without a measurable earned-value would not be accepted in the space 
community.  Therefore, employing a t-wise test strategy that seeks to minimize the required test 
covering array for spacecraft I&T could be a solution to increasing state space coverage without 
violating program resources. 

Any given system-level spacecraft test will typically only test a small handful of variables while 
leaving the rest of the system in a default configuration.  For example, a thermal engineer may run 
numerous tests on the spacecraft verifying heaters, temperature sensors, and thermostats are 
working properly at the integrated system level.  During this period, other non-interfering 
subsystem components such as Command & Data handling software (C&DH) or communication 
radios would likely be relegated to a single default state as the operating status of these 
components does not impact the primary test article.  A more optimal solution, one which  better 
utilizes the limited spacecraft test time, would systematically place the non-interfering 
components into different configurations to increase the system level state-space coverage.   

The use of a t-wise test strategy to implement a systematic approach to selecting the states of 
non-interfering controllable components (i.e. variables) is ideal since it provides clear state space 
coverage milestones.  Figure 1 below depicts the proposed spacecraft I&T approach to increasing 
state space coverage via t-wise testing.  First, a test conductor provides a list of components that 
have a required fixed state for the test.  The required system test configuration is then passed to an 
online tool aptly named a “t-wise test generator.” The online tool determines the states for each of 
the “free variables” based on the required component configurations, previously executed tests, 
and any other goals for prioritizing the orders of tests (to be discussed further).  Then, the test 
controller approves or rejects the proposed full system test configuration.  Finally, the operator 
configures the spacecraft components in their appropriate states and executes the desired test.  
During the course of the test, spacecraft telemetry is fed back into the online database updating the 
list of previously tested configurations.  From a conceptual level, the only additional requirements 



 

  

to the spacecraft I&T program is the development of the “t-wise test generator and database” and 
the review of proposed system configurations by the test controller. 

 
Figure 1. Schematic of Proposed T-wise Testing Strategy 

 

Modelling the State Space 
In order to adapt t-wise testing to a practical hardware/software system, it is necessary to consider 
the various options for modelling the system state space.  In the strictest sense, the purpose of 
testing across a system’s state space is to see how the system will respond when its controllable 
elements are placed in various operating states.  Therefore, when modelling a state space for t-wise 
testing, only those system components which can be directly controlled should be included in the 
model.  The selection of controllable elements to include the in the system’s state space model 
must be made based upon the desired testing goals.  For spacecraft and other highly-redundant 
systems there are a number of ways to build up a state space model.   

The most basic and highest level option would be to simply model the redundant components.  A 
typical deep space or large GEO stationary spacecraft carries redundant components (e.g. primary 
and backup heaters) to minimize the risk of a single point failure ending the mission.  Given the 
typical number of redundant components, properly testing all the possible system cross-strapping 



  

configurations is a very costly and impractical task.  The number of configurations tested generally 
constitutes a very small fraction of the set of all configurations.  Since many missions choose to 
restrict the operating configurations for the deployed system to only those that were tested during 
I&T, systems are often operationally constrained by I&T limitations.  T-wise testing provides the 
system engineer a way to systematically increase the number of tested configurations, thereby 
reducing future operational constraints.  Furthermore, if the engineering team accepts the notion 
that failures are resultant of no more than t components interacting, then if the redundant 
components are t-wise tested, the system can operate in any desired configuration.  

A more refined level of modelling would include high-level state variables of both non-redundant 
and redundant components.  The high-level state variables should provide a general picture of the 
current system status and potential emerging behaviour.  The purpose of this modelling is to ensure 
at a high level the various system components do not have any major gross interactions and the 
system is able to successfully execute basic functions.  For a complex system like a spacecraft this 
level of modelling would produce approximately 100 system state variables. 

An even more detailed approach to robust testing of the system state space would be to discretize 
all of the system control variables and execute a full t-wise test array.  Applications of t-wise 
testing in software verification and validation typically use this approach.  All of the software 
parameters are discretized and a full t-wise covering array is used to set the initial conditions and 
configurations of the software as regression tests are performed.  In a spacecraft, or similar 
complex hardware/software system, this may not be a feasible option give the many hundreds or 
thousands of control commands that may exist.  Instead the system engineer can take a hybrid 
approach by modelling elements whose control commands are expected to be used on a regular 
basis.  At this level, the goal of state space exploration is to verify and validate that the system is 
robust enough to operate in all of its various nominal operational configurations.   

Ordering of tests to achieve levels of T-wise completeness 
Achieving full t-wise completeness for systems of moderate complexity (~100 components) and t 
values up to 6 is practical for faster than real time software and simulations, but still is unlikely to 
be achieved by a hardware/software system like a spacecraft.  Take for a example a system with 50 
components, each of which has 3 states.  The smallest t-wise test suite generated by current 
state-of-the-art algorithms has more than 8000 test vectors; this is far outside the scope of a typical 
spacecraft I&T test campaign.  Therefore, metrics that determine the level of t-wise completeness 
are useful to provide the status of the V&V state space coverage.  The metrics can also be used by 
a system as presented in Figure 1 to guide the selection of new tests. 

As presented in a previous conference proceeding [7], the authors developed a set of metrics to 
represent t-wise completeness.  For a given value of t and a test suite that does not represent a 
complete t-wise covering array, the notion of partial t-wise testing is useful.  Indeed, system testers 
may want to know the likelihood that faults triggered by more than t interacting components will 
be uncovered by executing the test suite.  Two metrics associated with a partial t-wise covering 
array are particularly useful:  The first, referred to as the total t-wise coverage, is the percentage of 
t-length sub-vectors that are contained within the array.  To compute this value, simply count how 
many different t-length sub-vectors are in the array, where two sub-vectors are different if either 
they are indexed by a different set of t columns or they are indexed by the same t columns but 
differ in at least one component.  The second metric is parametrized by a value q from the interval 
[0,1] and is referred to as the (q,t)-completeness of the test suite.  It represents the percentage of 



 

  

t-sets for which at least a q-fraction of the possible configurations exists in the array.  To compute 
this value, enumerate the n-choose-t t-sets, and then go one-by-one through these sets determining 
if at least a q-fraction of the possible configurations are expressed.  Divide the number of t-sets that 
are at least a q-fraction covered by the total number of t-sets, n-choose-t.  The total t-wise coverage 
and (q,t)-completeness computations can be repeated for any number of values of t and q, and the 
results can be used to form a quantitative view of the likelihood that  interaction failures involving 
various numbers of components will be uncovered by executing the test suite. 

It is expected that initial adaptations of t-wise testing will work to achieve a high level of partial 
t-wise coverage without increasing the number of tests in the I&T test plan..  Take for example the 
proposed spacecraft I&T t-wise test generator.  This online utility receives from the test conductor 
a set of test requirements, references the previously run test configurations and makes a decision 
on how to configure the remaining free variables.  To determine which configuration adds the most 
value, the t-wise test generator might select the configuration from all remaining vectors in a 
t-wise covering array that is most orthogonal to the previously run tests (i.e. greatest 
component-by-component dissimilarity).  This type of scheme would then provide the greatest 
span of the V&V testing state space but may not achieve complete t-wise coverage if time 
constraints force fewer than the requisite number of tests.    Another scheme could focus on 
making certain that particular sets of critical system components achieve high (q,t)-completeness 
as compared to less critical components.  An even simpler process for determing the next test 
vector would be to consider only a smaller set of the variables states to ensure a minimum 
(q,t)-completeness.  These examples serve to illustrate that the choice of optimization routines to 
prioritize t-wise covering arrays under the assumption that full t-wise completeness will not be 
achieved is extensive.   

Benefits of T-wise testing 
In many instances, using t-wise testing to increase the state space coverage of V&V system testing 
is a practical systems engineering approach having clear benefits over the current practice of best 
system engineering judgment.  In order to evaluate whether a given system will benefit from this 
kind of testing paradigm, one must  consider the operational environment of the system and 
whether it is required or likely that system will operate in numerous configurations.  In a highly 
risk-adverse environment like human space flight, it may be required that every system 
configuration be tested exactly how it will be flown, limiting the number of configurations that are 
considered valid post-deployment.  However if the hardware/software system will be part of a 
larger network (e.g. a system of systems) which has an extraordinarily large operating state space, 
systems engineers need to solve the “2^N” problem to ensure the system will perform as intended.  
Currently, systems engineers systematically plan V&V system tests based on the criteria such as 
most probable or most severe expected operating conditions.  System configurations that are not 
exercised in an end-to-end system level test, are then verified and validated for use by analysis 
rather than system testing – which does not reduce mission risk as much as an actual test.  T-wise 
testing provides a way for systems engineers to move beyond best engineering judgment. 

It should be noted that t-wise testing is one of a number of combinatorial method that seeks to 
provide intelligent coverage of the system.  These methods, categorized as deterministic, 
non-deterministic, or compound (deterministic and non-deterministic), have been shown to 
achieve similar results [3].  However, the deterministic nature of t-wise testing allows users to 
generate a complete test suite and then prioritize the order of execution according the specific 



  

system-testing needs (sub-configurations) or goals (work towards the highest level of 
t-completeness) in those instances where complete t-wise coverage cannot be achieved.  As 
compared to other combinatorial approaches, t-wise testing is a highly intuitive construct that can 
be easily communicated across a multi-disciplined team.  Describing the motivation behind a 
t-wise strategy is simple: test all the possible configurations between every small set of t variables. 

The most practical argument for using t-wise testing may be the extensive research performed by 
the software testing community considering its efficacy and developing automated test-generation 
tools.  As mentioned previously, NIST has investigated numerous software applications and 
determined that the total number of variables that lead to failures is less than six.  Although 
hardware/software systems have additional complexity including non-discrete operating 
conditions, testing of these systems is nominally performed in a discrete fashion.  System level 
verification tests will typically test extreme operating points (ex. Hot and Cold temperatures) and 
verify the system can operate in any point in between by analysis.  Additionally, the research, 
development, and accessibility of efficient algorithms to generate compact t-wise covering arrays 
can be leveraged to quickly deploy t-wise test strategies to hardware/software systems.  While 
numerous combinatorial methods to explore a system’s state space exist, many of these are either 
infeasible (i.e. algorithms are too complex to implement in actual software) or still in the very early 
stages of development.  The ACTS utility, among others, demonstrates an efficient way to produce 
compact test arrays for software V&V and can be easily adapted by the systems engineering 
community.   

Weaknesses of T-wise testing 
Despite its potential to be readily adapted by the systems engineering community for system level 
V&V testing, t-wise testing does have several drawbacks that should be examined in future 
research.  First and foremost, adaptation of t-wise testing to hardware/software systems requires 
the decomposition of the system into components that assume discrete configuration states.  Since 
t-wise testing is rooted in testing all the possible distinct combinations of states between t 
variables, a system that cannot be decomposed into discrete states would not be suitable for this 
form of test.  Another area of concern is the potential for a particular test vector to mask the 
behaviour or responses of other variables.  In the generation of a t-wise covering array, algorithms 
build up test vectors based on the need to satisfy t-wise combinations of variables and do not 
consider the entirety of the system configuration.  Therefore, if the system behaviour is defined by 
more variables than the chosen t value there is potential of not testing the state spaces thoroughly 
enough.   

Another aspect of adapting t-wise testing is addressing the question, “what constitutes a successful 
test of a t-wise test vector.”  In hardware/software systems, like the spacecraft I&T environment, it 
is impractical to execute a full set of performance regression tests for every tested configuration.  
This so-called “oracle problem” is recognized by practitioners of t-wise testing in the software 
community, though many proposed solutions [5] are impractical in the hardware/software domain 
due to real-time execution considerations.  The “crash-testing” approach, for example, simply 
considers whether the system seems to have survived a tested configuration.  However, in a 
real-time system a crash may not be immediate.  One option may be to consider the time associated 
with potential failures for a given component state.  Take for example a  system component A that 
is in state 0 and the system engineer judges that any anomalies from this operating condition will 
arise in less than n seconds, and classifies this as the (A,O) failure time.  An online utility that 



 

  

records test system configurations could record how long each component state was maintained 
and if no anomalies arise before the maximum of all (A,O) failure times over all component 
configurations O in the test, then the configuration was successfully tested.  However, this may 
re-introduce best engineering judgment in the failure time determinations, trading one type of best 
guess for another.  In any case, there isn’t a clear answer to the question and further research into 
the successful test of a t-wise test vector should be conducted.  

Potential refinements to t-wise testing 
In many instances, certain sets of system components are known to interact weakly or not at all.  
Traditional t-wise testing would still test for interaction failures involving these components.  As 
discussed, system testing resources are generally scarce, and in situations where component 
interaction likelihood can be characterized, it may be useful to spend resources on those tests 
where the probability of triggering interaction failures is greatest.  One approach is to adopt a 
graph model of the system and perform tests only to cover those t-sets of components that exhibit a 
certain graph property.   

Recall that a graph G is a pair (V,E) where V is a set of vertices and E is a collection of edges 
between pairs of vertices.  A system can be modelled as a graph where the vertex set V is simply 
the same collection of configurable components that we have been discussing and the edge set E is 
given by drawing an edge between two components whenever there is a direct interface between 
them.  For example, the main processor in a system and the data disk are connected by an edge 
because they share an electrical (and a data) interface.  With the system graph model defined in this 
way, we may define a (G,t,r)-wise test suite as a collection of test vectors such that every t-set of 
components with the property that the set has pairwise distance at most r in the graph G has every 
possible t-way configuration covered by at least one vector. 

It is not difficult to show that any algorithm which can produce a t-wise covering array of size 
f(t,n) can easily be modified to produce a (G,t,r)-wise covering array of size at most f(t, χ(G)r), 
where χ(G) is the chromatic number of the graph (i.e. the smallest partition of the vertices of G into 
sets such that no two vertices in the same set are connected by an edge in G.  It is well known that 
χ(G) <= ∆(G), where ∆(G) is the maximum number of edges incident to a single vertex in the graph 
[2].  Recalling that best known algorithms for t-wise covering arrays produce test sets that scale as 
log_2(n), for systems without no component having more than (log_2(n))r interfaces, this can 
amount to a savings.  The trade-off, of course, is that only t-sets of components that are pairwise 
interface-reachable in r or less steps are guaranteed to be tested.  This may at least serve as another 
method for addressing the test prioritization problem outlined in the “Benefits of t-wise Testing” 
section. 

Conclusions 
Using the t-wise test concept developed by the software community, this paper proposes a method 
to increase state space coverage during system level V&V testing.  The overarching principle of 
the proposed approach is to develop a system to manipulate “free variables” during required or 
pre-planned system V&V tests to uncover potential failures and demonstrate system performance 
across a larger subset of the state space.  The proposed test architecture for the spacecraft I&T 
environment provides a simple example of how t-wise testing could be adapted to an actual system 
test plan.  Further information is provided on how tests could be prioritized, and how notions of 



  

partial t-wise coverage could be applied in situations where a full t-wise test suite cannot be 
executed.  Additional research and development are required before deploying the concept to an 
actual hardware/software system, but the foundational algorithms and test-generation software 
packages have already been developed by the software testing community.   

Ultimately, improving system level V&V testing is a difficult task since most measures of 
improvement are largely subjective in nature.  The authors suggest that if free-variables can be 
exploited systematically on a test-by-test basis to exercise an increased number of configurations, 
then the opportunity to uncover potential failures during system V&V testing is increased.  
Although, changing the processes and procedures used by system-level V&V test engineers is a 
difficult task, a t-wise test strategy is a manageable step forward, since it can be easily 
communicated to various stakeholders, does not significantly increase required test time, and 
poses no great risk to the system under test.  Compared to industry standard “best engineering 
judgment” test strategies, t-wise testing provides a quantifiable, more systematic approach to 
validating complex systems. 
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